A simplified classification and water-balance model of seasonal pools for the efficient characterization of hydroperiod: adaptive habitat management under changing climates in the Guadalupe-Coyote Valley, California

Kealie Pretzlav, PhD Barry Hecht, CHg, CEG April 12th, 2018

Funding sources:

- Santa Clara County Habitat Agency
- California Fish and Wildlife

Work completed in collaboration with: Eric Donaldson, Balance Hydrologics Stephanie Moreno, Guadalupe-Coyote Resource

Talk Outline:

- 1. Classifying pools by their geomorphic development
- 2. Modeling the hydrologic processes, with hydroperiod as the first metric
- Distinguish amongst pools using model parameters quickly and easily generated using Python and field data

Genetic classification

- Based on geology, soil types, pond geometry
- Useful tool for understanding first-order hydrologic processes

Initial version in:

Bauder, E. T., Bohonak, A. J., Hecht, B., Simovich, M. A., Shaw, D., Jenkins, D. G., and Rains, M., 2009, A Draft of Regional Guidebook for Applying the Hydrogeomorphic Approach to Assessing Wetland Functions of Vernal Pool Depressional Wetlands in Southern California, 117p.

Pedogenic

McCoy Basin, Fairfield, California – pedogenic pools, salts from bedrock in headwaters

Tectogenic

Landslide Dammed

Alamaden Quicksilver County Park, Santa Clara County, California

Alluvium Dammed

Watsonville West Quadrangle, 1954

Dune Dammed

Ellwood Beach, Goleta, California, video by hang glider Jim Becker, published March 9, 2014.

Bedrock (Tenaja)

Tenaja Falls Trail, Santa Ana Mountains, California

Anthropogenic Pools

Instream Modified

Mining or Quarry Depressions

Model decisions are informed by pond classification based on geomorphic origin

Classification	Relative Age			
Pedogenic	100,000 - 1,000,000			
Tectogenic	100,000 - 1,000,000			
Landslide Head Scarp	100 - 10,000			
Volcanigenic	10,000,000 - 100,000,000			
Alluvium Dammed	100 - 100,000			
Dune Dammed	100 - 10,000			
Landslide Dammed	100 — 10,000			
Bedrock (Tenaja)	100,000 - 1,000,000			
Bedrock (Karst)	100 - 10,000			
Regional Subsidence	n/a			
Mining or Quarry Depressions	100 - 10,000			
Instream Modification	100			

Figure 1. Pond Locations, Central Santa Clara County, California

Source: Santa Clara County Parks

Goal:

Alm

Understand hydroperiod trends in pools with respect to habitat optimization for target species (California red-legged frog, western pond turtle, native California tiger salamander)

Open Questions:

- 1. How can we optimize hydroperiod for target species?
- 2. How will climate change affect hydroperiod?

Figure 1. Pond Locations, Central Santa Clara County, California

Source: Santa Clara County Parks

Water Balance Model

Model Inputs

Input	Source
Historical mean monthly air temp	PRISM ¹
Historical total monthly precip	PRISM ¹
Projected air temp and precip	Downscaled GCMs sourced from SIMClim ²
Stage-storage/spillway elevation	Surveyed, Balance Hydrologics staff
Soil water capacity	SSURGO
Watershed area	Computed, DEM/Lidar dataset

¹PRISM data sourced from <u>www.prism.oregonstate.edu</u> ²More info available at <u>www.climsystems.com/simclim</u>

Model Calibration

Short-term monitoring or observations supplemented with google earth imagery data

If LiDAR and good aerial coverage, possible to build hydroperiod model without field visit

Step 1: Calculate Known Quantities

Step 2: Calibrate Inferred Quantities

	•	Local Soil Moisture Groundwater = F(precip)
Groundwater In	•	Bedrock Fracture Groundwater = F(total winter precip), lagged, threshold
	•	Fault-sourced Groundwater = F(total winter precip), lagged

Groundwater Out

- Percolation Groundwater = F(pond volume), i.e. pond head
- Soil Moisture Wicking Groundwater = F(ET)

ST-01

- Instream modified pool
- Hydroperiod Dec Jun, 7 months
- Some groundwater input in wet years
- Leaky pond/berm

AQ-01

- Mining or Quarry Depression
- Hydroperiod: year-round
- Some groundwater input in wet years
- Moderately leaky pond/berm

Model Results Summary

Leaky ponds:

- Instream modified ponds, berm construction
- Landslide head scarp pools
- Tectogenic pools
- Landslide dammed

Groundwater-dominant fluxes:

- Tectogenic pools
- Landslide head scarp pools, when co-located with faults
 Runoff-ET dominated fluxes:
- Instream modified pools
- Mining or quarry depression pools
- Landslide dammed

What does hydroperiod look like?

Simulated Historical Ponding, 1980 – 2018, Projections 2018 - 2030

How will hydroperiod be affected by climate change?

In the Bay Area:

- rainfall projected to concentrate in winter months
- temperatures projected to increase by <1°C

How can hydroperiod be managed? *Ex: target hydroperiod for CRLF extends to Aug/Sep Bullfrog prefer year-round*

Modeled Actual

Raise spillway 3 feet

Modeled Actual

Lower spillway 7.5 feet

Month

Month

Key Take-Home Points:

- 1. Genetic classification
 - Groundwater inputs from faults? Leaky pond?
- 2. Hydroperiod model
 - Cost-effective, open-source way to estimate month-scale hydroperiod
- 3. Habitat Management
 - Use hydroperiod model to simulate enhancements: spillway elevation, pond geometry, clay lining
- 4. Climate Change Resilience
 - Impose temperature and precipitation record to understand cycles of extreme wet and dry periods

Other applications*:

- 1. Multiple desiccation events in a year
- 2. Temperature
- 3. Turbidity
- 4. Salinity

*if calibration data available

Kealie Pretzlav, <u>kpretzlav@balancehydro.com</u> Barry Hecht, <u>bhecht@balancehydro.com</u>

Model decisions are informed by pond classification based on geomorphic origin

Classification	Primary Infows	Primary Outflows	Relative Age	
Pedogenic	Surface runoff	ET	100,000 - 1,000,000	
Tectogenic	Fracture/fault groundwater	ET, bedrock fractures	100,000 — 1,000,000	
Landslide Head Scarp	Groundwater seeps	Leaky – loosely packed landslide sediments	ed 100 – 10,000 s	
Volcanigenic	Surface runoff	ET, leaky bedrock cracks	10,000,000 - 100,000,000	
Alluvium Dammed	Surface runoff	Leaky when alluvial highly permeable	100 - 100,000	
Dune Dammed	Varies	Leaky - dune sediments highly permeable	100 - 10,000	
Landslide Dammed	Surface runoff	Leaky berms, losses through landslide deposits	100 – 10,000	
Bedrock (Tenaja) Bedrock (Karst)	Surface runoff	ET, surface outflow	100,000 – 1,000,000 100 – 10,000	
Regional Subsidence	Surface runoff	ET, surface outflow	n/a	
Mining or Quarry Depressions	Surface runoff, likely no groundwater	ET 100 – 10,000		
Instream Modification	Surface runoff	Leaky berms, ET, lateral infiltration	100	

Model Results Summary

Model Parameter	Tectogenic	Landslide Head Scarp	Mining or Quarry Depression	Instream Modified	Landslide Dammed*
Rainfall Fringe	4 – 6 x pond area	2 – 4 x pond area	2 x pond area	2 – 3 x pond area	
Leaky Pond	Moderately leaky	Moderately leaky	Very leaky	Varies	Moderately leaky
Deep Fault Groundwater	Yes, lag 7-8 months	When landslide co-located with fault	No	No	No
Bedrock Fracture Groundwater	Yes, lag 3-4 months, in dry years	Yes, in moderately wet years	Some active seeps	Some active seeps	No

*Only 1 landslide dammed pond in this study, so not all parameters are reported